
research papers

28 doi:10.1107/S0108767308032728 Acta Cryst. (2009). A65, 28–38

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 12 February 2008

Accepted 10 October 2008

# 2009 International Union of Crystallography

Printed in Singapore – all rights reserved

Two-wavelength inversion of multiply scattered soft
X-ray intensities to charge density

J. C. H. Spence

Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA. Correspondence

e-mail: spence@asu.edu

A method is described for reconstructing the two-dimensional real-space charge

density of an isolated object from measurement of the soft X-ray transmission

diffraction pattern when it is affected by strong multiple scattering. The Bloch-

wave scattering-matrix approach is used to show that the diffracted amplitude

depends only on a simple product of X-ray wavelength and sample thickness

(unlike the case of relativistic electron diffraction) under reasonable

approximations. The multislice formulation then gives the effect of a small

change in wavelength, which involves only single scattering. Dynamical

diffraction patterns are recorded at two adjacent wavelengths, phased by

iterative methods, transformed to real space and divided to give a single-

scattering wavefunction. This can then be used to produce a charge-density map.

The extension of the method to tomography is discussed. Consideration is first

also given to the possibility that absorption due to the photoelectric effect may

be so severe for soft X-rays that multiple elastic scattering becomes so much less

probable than photoelectric absorption that it may be neglected entirely. A

discussion of signs in soft X-ray, positron and electron multiple-scattering theory

is given.

1. Introduction

The strength of multiple elastic scattering, which prevents a

straightforward inversion of diffraction patterns to real-space

images (even beyond the phase problem), is characterized by

several parameters which take on differing values for hard

X-ray, soft X-ray, electron, positron and neutron diffraction.

For two-dimensional soft X-ray and electron diffraction in the

projection approximation, the reconstruction of the sample

charge density (or potential) may be understood to be a two-

step process, in which the phase problem is solved for the far-

field diffracted intensities, and the two-dimensional Fourier

transform of these provides the complex ‘exit-face wave-

function’. This is only simply related to the projected charge

density (or potential) under conditions of single scattering;

otherwise a real-space map of the charge density (potential)

cannot be obtained. (For three-dimensional hard X-ray

diffraction from small-unit-cell crystals, neither the projection

approximation nor the exit-face wavefunction are used, but

similar difficulties arise.) The parameters that define the

validity domain of the single-scattering approximation include

the beam-energy-dependent strength of the elastic interaction

(often characterized by an extinction distance) and, in the

transmission geometry, the sample thickness. Equally impor-

tant are absorptive (inelastic) effects such as the photoelectric

effect for X-ray diffraction, which may provide an effective

limit on thickness, and hence on the severity of multiple

scattering. If diffraction is described using an optical potential

and a suitable wave equation, the real and imaginary parts of

this potential [or complex refractive index n = (1 � �) � i�]

provide a fixed, sample-dependent quantity whose relative

contributions to elastic and inelastic scattering can be varied

only by the choice of beam energy. In this paper we consider

only hydrated protein samples, for which this ratio of elastic to

inelastic cross sections is a well known function of beam

energy. It then controls the amount of information that can be

extracted from the ground state by elastic scattering per unit

damage by inelastic scattering. We compare the soft X-ray and

high-energy electron diffraction single-scattering regimes, and

consider the possibility that absorption effects may be so

severe for a soft X-ray beam energy near an inner-shell

absorption edge that photoelectron production becomes much

more probable than a second elastic scattering event. In that

favorable case, multiple scattering might be neglected alto-

gether. We then discuss the inversion of multiply scattered

intensities to give the sample charge density, and describe

successful simulations of inversion based on patterns recorded

at two different beam energies.

The interaction Hamiltonian for both X-ray and electron

diffraction separates into diagonal terms which derive from

the kinetic energy of the beam and off-diagonal terms which

depend on the potential energy or charge density. The diag-

onal geometric factors define the scattering kinematics and are

related to the Fresnel number, the excitation error and the

curvature of the Ewald sphere. Diffraction data are collected

on this sphere, which imposes energy and momentum



conservation. As in band theory for electronic structure, this

separation provides important insights into the nature of

multiple scattering and the related problem of tomographic

reconstruction. For the case where backscattering and polar-

ization effects are negligible (as for soft X-ray diffraction),

there have been at least five independent formulations of the

multiple-scattering problem, following the early work of

Ewald, Laue and Darwin on few-beam solutions [see James

(1965) for a review]. For electron diffraction, these are the

Bloch-wave solutions of Bethe (1929), the multislice approach

[see Cowley (1995) for a review], the scattering-matrix

approach (Sturkey, 1962), the Born series (Moody, 1972) and

the coupled differential equations of Hirsch et al. (1977). For

X-rays, Pinsker (1978) provides an excellent review. These are

more-or-less independent theoretical formulations, leading to

distinct algorithms which may be extended to nonperiodic

samples by straightforward computational superlattice

methods. Several researchers have demonstrated their

equivalence in the many-beam case. Here we focus on the soft

X-ray case, for which the essential single-scattering theory has

been reviewed recently by Kirz et al. (1995).

Using new iterative solutions to the phase problem, three-

dimensional images of nonperiodic objects have recently been

reconstructed from their soft X-ray single-scattering diffrac-

tion patterns (Miao et al., 1999; Chapman et al., 2006; Shapiro

et al., 2005). The presence of multiple scattering, which

destroys the simple Fourier-transform relationship of the first

Born approximation between the scattered amplitudes and

the sample charge density, has always been considered a

severe limitation to this diffractive (or ‘lensless’) imaging

technique (Thibault et al., 2006). However, it has frequently

been pointed out (Moody, 1968) that in a sense multiple

scattering solves the phase problem, since, in crystals, it allows

interference between different Bragg beams, making them

sensitive to structure-factor phases. An approach to inversion

with multiple scattering that takes advantage of this effect,

based on projection between constrained sets in the manner of

the hybrid input–output (HiO) algorithm, was described by

Spence et al. (1999). A dynamical ptychography approach has

also been described (Spence, 1998). All this contrasts with the

single-scattering case, where additional numerical direct or

other methods such as anomalous diffraction (MAD) or

isomorphous replacement (SIR) must be used to extract phase

information from crystal diffraction patterns.

Here we describe a scheme that allows direct inversion of

soft X-ray diffraction patterns affected by strong multiple

scattering to the two-dimensional sample charge density. We

assume a nonperiodic object, whose continuous distribution of

far-field scattering has been phased by the above iterative

methods. This initial treatment is limited to the case where the

sample charge density is not a function of the coordinate z

taken along the beam. This solution to the phase problem

provides the complex dynamical exit-face wavefunction (or

equivalently, the complex multiply scattered far-field

diffracted amplitudes), which bears no simple relationship to

the sample charge density, but is used as the input to the

inversion process. At least four such phasing methods have

been demonstrated recently (HiO, in-line Gabor holography,

ptychography and Fourier-transform holography), as reviewed

elsewhere (Spence, 2007). These have had varying degrees of

success in dealing with the ‘complex object’ (the exit-face

wavefield) used here.

We first use Sturkey’s scattering-matrix method to show

that the multiple-scattering theory involves only simple

products of wavelength and thickness, so that small changes in

each are equivalent. Differentiation of the scattering matrix

with respect to wavelength therefore provides the required

single-scattering amplitudes if the charge density is not a

function of the z coordinate along the beam direction. The

approach here is similar to that described by Allen et al. (2001)

for electron-microscope imaging of thin crystals using two

thicknesses. In that method, because images formed by lenses

are used, the resolution and aberrations of the image-forming

lenses limit resolution, and their two-thickness method

is applied to periodic objects. (The difficulties with

two-wavelength electron-diffraction methods are discussed

below.)

For soft X-rays, the neglect of both polarization and back-

scattering effects requires justification if the multislice method

is to be used for simulation. The multiple scattering (and

backscattering) of polarized hard X-rays by the aligned

molecules of a crystal has been extensively studied and

described by a Bloch-wavevector theory (e.g. Pinsker, 1978).

This has been the basis of both X-ray standing-wave fluores-

cence experiments and accurate structure-factor measure-

ments based on Pendellösung oscillations of Bragg intensities

with thickness. The solution of coupled differential equations,

one set for each polarization component, is then required for

the complex amplitudes. For unpolarized or polarized soft

X-rays incident on the unaligned molecules of an isolated

nonperiodic sample (such as a biological cell) in the trans-

mission geometry, a scalar theory of multiple scattering may

be used instead, since polarization effects can then be

neglected (Paganin, 2006). Since backscattering is also negli-

gible, the forward-scattering recursive multislice scheme may

then be used (Hare & Morrison, 1994; Thibault et al., 2006).

Backscattering at normal incidence is proportional to R =

(1� n)/(1 + n), where n is the refractive index, and is therefore

small for soft X-ray energies. It is also limited by the scattering

kinematics. The theoretical treatment then becomes similar

(but not identical) to that used for multiply scattered high-

energy electrons (HEED) in the same geometry (Bethe, 1929).

An ab initio derivation of the multislice method for soft X-rays

has been given by Thibault et al. (2006), in which they avoid

the small-angle approximation commonly used for more

efficient computation. (In the limit of sufficiently small

slice thickness, the common parabolic approximation to the

Ewald sphere produces convergence.) An additional factor

(1 � q2/k2)�1/2 (where q is the scattering vector and k is the

X-ray wavevector) also occurs in Thibault’s treatment, which

can be neglected if significant scattering occurs only for scat-

tering vectors much smaller than the incident wavevector, so

that the resolution d is necessarily much larger than the

wavelength. It is neglected in the following treatment.
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Temperature effects ultimately impose a cutoff on scattering

angle for coherent scattering.

Differences between the X-ray and electron diffraction

cases can thus be summarized as follows. We define interaction

constants �e = �/�Eo for electron diffraction (where Eo is the

beam energy in volts) and �X = re� for soft X-ray diffraction

(where re is the Thompson electron radius, 2.82 � 10�6 nm).

Phase shifts due to transmission through a material with mean

electrostatic potential Vo or mean charge density �o are then

�eVo t and �X�o t, respectively, where t is the sample thickness.

(The real part of the refractive index for X-rays is � = �X��o/

2�, where �o ’ 333 e nm�3 is a typical protein electron

density, with mass density 1.35 g cm�3 and typical stoichio-

metry H50C30N9O10S1. Values of mass density between 1.2 and

1.4 g cm�3 can be found in the literature.) More accurately, �o

should be replaced by complex �, which is related to the

effective number of electrons participating in oscillator

strengths for the nearby absorption edges, and this is the

quantity that diffracts soft X-rays. The resulting ‘object’ for

diffractive imaging may be treated as real only if there is no

spatial variation in the imaginary part of the refractive index

(Song et al., 2008). Extinction distances for HEED �q = �/�Vq

are tens of nanometres, but microns for soft X-ray diffraction

(SXRD). (Here Vq is a Fourier coefficient of electrostatic

potential and �q is a measure of the strength of multiple

scattering, as discussed later in connection with Fig. 2.) The

thickness of the sample �t = 1/(2�q2) for which the phase shift

due to Fresnel propagation becomes �/2 at resolution d = 1/|q|

is 0.8 nm for HEED (Vo = 2 � 105 eV, d = 0.2 nm) but 6.25 nm

for SXRD (� = 2 nm, d = 5 nm) if typical experimental

conditions are used in each case. When applied to a sample of

thickness �t, this expression gives an estimate of the thickness

and resolution limits of the projection approximation.

However, the most important differences are the strength of

the absorptive processes and the sign of the refractive phase

shift. As shown in the next section, depending on the proxi-

mity to absorption edges, the photoelectric effect may

completely dominate SXRD, whereas the imaginary part of

the optical potential in HEED is often taken as about one

tenth of the real part. For protein at 290 eV above the carbon

K edge, the amplitude attenuation length is about 0.5 mm. For

soft X-ray imaging, the energy range between the carbon and

oxygen K edges is of particular interest (the ‘water window’).

Other differences between electron and X-ray multiple scat-

tering include the much larger rocking-curve width 1/�q for

HEED (which is a significant fraction of the Bragg angle, but

seconds of arc for hard X-rays) and the much flatter Ewald

sphere for HEED, resulting in a much larger domain of

validity for the projection approximation. The relationship

between the various approximations made in multiple-

scattering theory are summarized in Goodman & Moodie

(1974).

The consideration of signs in the multislice method requires

some caution; the original Cowley–Moodie papers inad-

vertently provided a theory of positron diffraction because of

a sign error, and a similar error appeared in Sturkey’s theory

(Saldin & Whelan, 1973). All signs are fixed by those in the

wave equation if the time dependence is included, and this

fixes signs in a plane-wave solution. Forms of both Maxwell’s

and Schrödinger’s equations have appeared in different texts

with different consistent signs, traceable ultimately to the

Dirac equation for electrons. Since the refractive index for soft

X-rays is less than unity (unlike that for high-energy elec-

trons), the X-ray wavelength is increased in a medium. With

wavevector ko = 1/�, an incident soft X-ray plane wave

exp(�2�ikoz) entering a medium of refractive index n

becomes exp(�2�ikoz)exp(+2�i�koz)exp(�2��koz) in the

medium, with � positive. This fixes a positive sign in the

multislice phase grating; the sign of the Fresnel propagator is

fixed consistently by an ‘empty lattice’ approximation, where �
= 0, resulting in the signs given in equations (8) and (9) below.

[These are also the signs for positron diffraction and chan-

nelling (Howie, 1966).] For high-energy electrons, a negative

sign is needed in the exponential in equation (8).

2. Does absorption kill off soft X-ray multiple elastic
scattering?

The short linear intensity-absorption lengths for soft X-rays

suggest that most X-rays may be annihilated by conversion to

photoelectrons before the probability of a second elastic

scattering event becomes appreciable. If this is so, multiple-

scattering effects might be ignored. In this section we inves-

tigate this possibility for samples of protein.

Little can be said in general about the form of the distri-

bution of multiple elastic scattering from a three-dimensional

nonperiodic sample apart from statements about symmetry

[despite our ability to simulate multiple scattering for parti-

cular cases (Saldin & Pendry, 1985)]. Unlike single scattering,

which is subject to Friedel’s law, three-dimensional multiple-

scattering intensities reflect the true three-dimensional

symmetry of the charge density. This provides a test for the

presence of multiple scattering – for a sample charge density

known a priori to lack inversion symmetry, the observation of

symmetric diffracted intensities obeying Friedel’s law indi-

cates single-scattering conditions. For the simplified case

where � = �(x, y), the Fourier transform of the charge density

in reciprocal space is confined to a plane through the origin,

normal to the beam. For a nonperiodic sample, the use of a

computational superlattice then allows extinction distances

and excitation errors to be defined, using q’ �/� = h/a (in one

dimension) as a reciprocal-lattice vector for the superlattice of

length a, where � is the total scattering angle and h is an

integer. (Note that q differs from that used elsewhere by 2�.)

Extinction distances �q = �/�X�q may be taken as a crude ‘path

length’ for double elastic scattering and hence depend on

scattering angle through the Fourier coefficients of the charge

density �q. Since �q < �0’ 333 e nm�3 for proteins, we have �q

> 0.8 mm at 290 eV, whereas the amplitude attenuation coef-

ficient 2tabs = 0.5 mm at this energy, so we might expect

comparable effects. In the simplest two-beam multiple-

scattering theory, diffracted intensities oscillate in thickness

with period �q if the excitation error Sg (a measure of the

Ewald-sphere curvature, where g is a reciprocal-lattice vector)
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is zero. In this low-angle regime, �q will therefore increase with

angle as �q falls off, and increase with increasing beam energy

as �X decreases, as shown below in detailed calculations. In the

many-beam case, the oscillation with thickness (or beam

energy) is not strictly sinusoidal. Note that the phase-grating

approximation [PGA, the exponential term in equation (8)],

which is accurate at sufficiently low resolution for all thick-

nesses, predicts a sinusoidal variation of intensity with thick-

ness (a different period for every point r in the sample). At

high angles, excitation errors rapidly become very large for

soft X-rays (unlike hard X-rays and electron diffraction),

because the relatively small Ewald sphere of radius 1/� is

comparable to the resolution limit |qmax|. In this kinematic

limit of dynamical theory, the effective extinction distance �q =

1/Sg << tabs. This weak scattering, rapidly oscillating with

thickness, is consistent with the kinematic single-scattering

theory. Thus both the PGA and the single-scattering theory

predict sinusoidal oscillations if � = �(x, y).

The multislice method was used to simulate the thickness

dependence of scattering from a 50/50 mixture of pure protein

and water. A model charge density �(x) = �ot(x), representing

three parallel strands of protein lying in a plane normal to the

beam, was created as follows. Here �o = 2(� + i�)/(re�
2) is the

constant complex effective charge density, proportional to the

effective number of electrons per atom contributing to the

oscillator strengths. (This tends to the beam-energy-

independent electrostatic charge density for harder X-rays if �
= 0.) Thus all modulation of scattering arises from shape

effects in the protein–water sample, which is taken to have

uniform composition. Only the zero-order Fourier coefficient

of the charge density is complex (leading to absorption). A

projection of the charge density taken along the beam direc-

tion was taken to have the form t(x) = exp(�x4/w) in the

transverse direction x normal to the beam and the strands, as

shown in Fig. 1. Here w is a width parameter, and the charge

density is constant along the beam direction and along the

strands. This produces a one-dimensional line of diffracted

intensity normal to the strands, so that a one-dimensional

multislice formalism was used. The superlattice dimension a =

1 mm was sampled at 2.5 nm intervals, each peak had a full-

width of 25 nm and 199 sampling points were used in reci-

procal space to |qmax| = (199/1000) nm�1. The resulting one-

dimensional plots more clearly reveal imperfections in the

inversion process than two-dimensional greyscale images,

which are more difficult to quantify, and whose presentation

depends on choice of brightness and contrast. However, we

emphasize that extinction distances (and the severity of

multiple scattering generally) will be different for two- or

three-dimensional charge densities. The region of most severe

absorption occurs just above the carbon K edge at 290 eV for

proteins. There the linear intensity-attenuation distance for a

typical protein (H50C30N9O10S1) where � = 4.27 nm is tabs =

0.25 mm. [I = Ioexp(�	z) with 	 = 4��/� = 1/tabs, and

n = (1 � �1) � i�1, where �1 = 0.0019 and �1 = 0.00128 at this

energy, using a mass density of 1.35 g cm�3 for pure protein

(CXRO, 2008).] Since typical cellular material may be at least

50% water (and contain lipids), we approximate the real part

of the refractive index by the mean of the values for water and

pure protein and set this mean equal to the maximum value of

the model charge density shown in Fig. 1(a). The single-

scattering diffraction pattern from this is shown in Fig. 1(b)

based on equation (1). For water, �2 = 0.0022 and �2 = 0.000157

at this energy. The peak widths w were chosen to provide

sufficient scattering at the resolution limit needed for these

simulations, and were about five times the wavelength. The

absorption coefficient used was also the mean of those of

water and protein, so that the expression for the phase grating

in one slice of the multislice formalism (thickness �t) was

exp[�i(�1 + �2)�t/�]exp[��(�1 + �2)�t/�]. Half the phase

grating is water and half protein, and the approximation is

made that coherent scattering from this mixture is not greatly

different from that from separated regions of each.

The severity of multiple scattering is most easily judged

from the thickness dependence of the scattering, which, if not
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Figure 1
(a) The model electron density used throughout. ‘Distance’ is the real-space distance across the density peaks. The peak full-width is 25 nm. (b) The
single-scattering far-field diffraction-pattern intensity produced by this electron density using 290 eV X-rays, just above the carbon K edge. � is the
scattering angle and q differs by 2� from that used elsewhere.



angle-integrated, is initially proportional to the square of the

thickness under single-scattering conditions. We show calcu-

lations at several energies: at 290 eV, where tabs is a minimum,

and at 500 eV, the highest energy in the water window

commonly used with undulator insertion devices. (These

results were also used for tests of the inversion algorithm.)

Calculations are also given for 1.5 and 3 keV, well above the

important biological inner-shell absorption edges. Fig. 2 shows

multislice calculations for the scattering from these protein/

water fibers as a function of their thickness (or, equivalently,

of depth within the fiber) for two different scattering angles at

a beam energy of 290 eV, where tabs is a minimum. Fig. 2(a)

shows curves for |q| = �/� = 1/d = 1/100 nm�1 (low resolution)

with and without the effects of the exponentially decaying

photoelectric absorption envelope. Here � is the total scat-

tering angle. These two curves are compared with the

predictions of single-scattering theory. In this figure we note

the initial parabolic dependence of diffracted intensity on

thickness, which is the signature of single scattering at the

Bragg condition in crystals for data that are not angle-

integrated. The single-scattering oscillation period (top curve)

is seen to be much greater than the actual period when

multiple scattering is included (next to lowest curve).

However, the effect of absorption is dominant, causing the

single (next to top curve) and multiple (lowest) scattering

curves to differ mainly by a scale factor. In addition, the

multiple-scattering curve falls off prematurely. Fig. 2(b) shows

similar results at higher resolution (larger scattering angle)

with |q| = 1/20 nm�1. Again the curves that include absorption

approximately follow each other (continuous line and plus

signs), but now without much scaling. The net result will be an

overemphasis on high spatial frequencies in the reconstructed

images. At these higher angles (with larger ‘excitation error’)

the single-scattering oscillation period (0.5�q2)�1 is about

equal to that of the multiple-scattering period, since this

weaker scattering is less affected by multiple scattering.

Fig. 2(c) shows the variation of the phases with thickness,

where the periodicities are now those of the curves in Fig. 2(b).

The single-scattering intensities and phases are obtained from

the expression

 ðqÞ ¼ ð�X�qtÞ½sinð�SqtÞ=�Sqt� expð�i�SqtÞ; ð1Þ

where the phase factor (see Fig. 2c) depends on the choice of

origin along z, and is here chosen at z = 0 to agree with the

multislice boundary condition at the entrance face. Sq is

defined in equation (4) below. Abrupt jumps in phase are due

both to changes of sign in the sine function in this equation at

each extinction period of the intensity (half that of the

amplitude) and the method of plotting in �� < � < � (where

� is the ordinate in Fig. 2c). At the lowest angles, the phases

are controlled by the potential effect of the phase grating,

rather than propagation, in accordance with the Glauber/

Molier high-energy approximation for scattering (Ohmura,

1962). We note that the sign differences between electron,

positron and soft X-ray multiple scattering have no effect on

single scattering.
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Figure 2
(a) The thickness dependence of soft X-ray multiple scattering at 290 eV
for q = �/� = 0.01 nm�1. The top curve (star symbols) shows the single-
scattered result (after division by 10) with the photoelectric absorption
switched off. The continuous curve shows the single scattering with
absorption. The curve shown with diamond symbols is the prediction of
multiple-scattering theory without absorption. The lowest curve (plus
signs) is multiple scattering with absorption. (b) Similar to (a), at a larger
scattering angle with q = 0.05 nm�1 (20 nm spatial frequency), showing
more rapid oscillation. The top curve (star symbols) shows the single-
scattered result with the photoelectric absorption switched off. The
continuous curve shows the single scattering with absorption. The curve
shown with diamond symbols is the prediction of multiple-scattering
theory without absorption. The final curve (plus signs) is multiple
scattering with absorption. It is seen to follow the kinematic result with
absorption reasonably well at lower thickness. (c) This figure compares
the scattering phase plotted against thickness for single (continuous
curve) and multiple (diamond symbols) scattering at q = 0.05 nm�1. At
low angles, where multiple scattering is stronger, phase distortions are
more severe. The kinematic phase is given in equation (1).



At higher beam energy, the intensity absorption distance

has increased (to 0.7 mm for protein and 8 mm for water) as

shown in Fig. 3 at 500 eV, just below the oxygen K edge. Here

curves are again plotted for large and small scattering angles.

For a thickness of less than half a micron, the effect of multiple

scattering is now small at high and low angles. Fig. 3(b) shows

similar behavior at a larger scattering angle, q = 0.05 nm�1,

with better agreement to higher thickness. The phase of the

low-angle scattering also starts to deviate significantly from

single-scattering predictions at about 0.5 mm thickness, as

shown in Fig. 3(c). [The first jump in the curve is due to the

method of display, the second is due to the sign change at

every intensity period in the single-scattering theory, equation

(1). This jump is not seen in the multiple-scattering curve.]

These results are used for the inversion process described in

the next section, which used thicknesses of 0.5 and 0.8 mm,

where multiple-scattering effects start to affect phases and

amplitudes. As for the lower-energy curves, both single- and

multiple-scattering curves fall off exponentially at 500 eV, and

increase with the square of thickness; however the premature

fall-off of the multiple scattering at low angles is again seen,

while better agreement is preserved at higher angles for this

weaker scattering.

Figs. 4(a) and (b) show comparisons of single and multiple

scattering with absorption at 1.5 and 3 keV, well above the

important biological absorption edges. We see that the scat-

tering at 3 keV remains kinematic to a thickness of at least

2 mm. Fig. 4(c) shows the phase variation, which remains

relatively unaffected by multiple scattering to a thickness of

about 2 mm, with much less error at higher angles. The longer

extinction distance at 3 keV over 1.5 keV is noted. The use of

these energies, although preserving single-scattering condi-

tions to much larger thickness, suffers from the unfavorable �4

dependence of coherent scattered intensity when the effects of

both the X-ray source and scatterer are considered (Howells et

al., 2008).

In summary, we find that whereas both single- and multiple-

scattering curves commence with the correct parabolic thick-

ness dependence, the low-angle multiple scattering shows a

premature fall-off, not present at high angles, which will

enhance high spatial frequencies in images. Phase distortions

are also most severe at low angles. The net effect is that while

absorption does greatly attenuate the effects of multiple

scattering (for example, by eliminating the second oscillation

in Fig. 3a), it must nevertheless be taken into account in order

to obtain quantitative agreement for samples thicker than

about half the extinction distance of the low-order scattering.

3. Scattering-matrix derivatives

We next establish that multiple scattering in SXRD is a

function only of the product �t under reasonable approx-

imations. We treat an isolated noncrystalline sample of

thickness t within a much larger artificial periodic two-

dimensional cubic unit cell of lateral dimension L, illuminated

in transmission by a plane wave. Initially, the charge density

within the cell is allowed to vary in an arbitrary manner along

the beam path. Since the wavelength is much larger than

interatomic spacings, modulation of the charge density �o

occurs only through shape effects, and the protein sample is

assumed to have constant composition. The protein may be
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Figure 3
(a) The thickness dependence of the scattered intensity at 500 eV and q =
0.02 nm�1, both curves with absorption. The continuous curve shows the
single scattering, the crosses show the multiple scattering. (b) Similar to
(a) for q = 0.05 nm�1, showing more rapid oscillations. (c) Variation of
phase (in radians) with thickness at q = 0.02 nm�1. At higher angles, the
agreement improves, as in Fig. 2. Note the second jump (phase reversal)
in the continuous curve at the minimum of the single-scattering curve in
Fig. 3(a).



embedded within an ice film, in which case only differences in

refractive index are important (Kirz et al., 1995), as discussed

further below.

Following the Bloch-wave formulation of the scalar

multiple-scattering theory extended to this case, where the

sample is not periodic along the beam path, the Fourier

coefficients of the dynamical wavefield at depth z within the

sample can be formed into a column vector u (Tournarie,

1962), where

duðzÞ=dz ¼ �2�iAðzÞuðzÞ: ð2Þ

This equation also describes wave equations generally,

including the Schrödinger equation if z is replaced by time and

A is replaced by the Hamiltonian. We assume that the second-

order derivative of u(z) in direction z is negligible (Koch &

Spence, 2003). Then, for soft X-ray diffraction, the off-

diagonal elements of A are proportional to the set of

z-dependent Fourier coefficients Ag-h(z) of the two-

dimensional charge density.

If A is independent of z for a charge density that depends

only on the two-dimensional vector r normal to the beam, then

the transform of the charge density is confined to a plane in

reciprocal space through the origin and normal to the beam.

Then the two-dimensional complex multiply scattered X-ray

wavefield �(r) across the exit face of the sample is related to

the far-field scattering ’(q) by a Fourier transform. (q is the

scattering vector which now terminates on the Ewald sphere.)

The Fourier transform of the phased diffraction pattern no

longer provides a faithful image of the charge density. We

assume that, by iteration between the diffracted intensity

distribution ’’* and estimates of �(r) (which occupies a

compact domain), the complex �(r) and hence ’(q) can be

found by using an algorithm such as shrinkwrap (Marchesini et

al., 2003) to solve the phase problem. By rotating the sample it

is possible to arrange for q to explore all of reciprocal space

within a sphere of radius |qmax|. For one orientation, the two-

dimensional complex scattering distribution ’(q) can be

arranged to form the elements of a single vector u(z = t). An

effective thickness may be defined by the absorption distance

tabs. The solution to equation (2) is then

uðtÞ ¼ Suo ¼ expð2�iAtÞuo ð3Þ

(Goodman & Moodie, 1974), where uo is a column vector

containing Fourier coefficients of the incident coherent beam

and S is unitary in the absence of spatially varying absorption.

We have not assumed a flat Ewald sphere; however, the

Fourier transform of the charge density is now confined to a

plane through the origin of reciprocal space, normal to the

beam.

Now the matrix A in this projection approximation has

diagonal elements which are the excitation errors of the

computational superlattice (Spence, 2003):

Sq ¼ jqj
2�=2; ð4Þ

which is positive for the soft X-ray case. The off-diagonal

elements in S are the positive quantities Aq = re�q�/2�, where

�q is a complex Fourier coefficient of the effective sample
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Figure 4
(a) The thickness dependence to 5 mm thickness of the scattering at
1.5 keV with absorption at high (q = 0.05 nm�1, rapidly oscillating curves)
and low angles (q = 0.01 nm�1). The curves shown as diamonds and as a
continuous line are for single scattering; the remaining are for multiple
scattering. Good agreement is preserved to about 1 mm. The slowly
varying curves have been divided by 10 000. (b) Similar to (a) at 3 keV
(� = 0.413 nm). Single scattering persists to 2 mm. Curves shown as
diamonds and as a continuous line are for single scattering; the remaining
are for multiple scattering. The intensity oscillates rapidly at high angles.
(c) The variation of the phase at 1.5 keV at q = 0.02 nm�1, comparing
single (continuous curve) and multiple (diamond symbols) scattering. For
weaker higher-angle scattering the agreement improves rapidly with
angle: low-angle phases here agree to within half a radian at about 2 mm
thickness.



charge density (number of electrons/volume). Then we can

write

S ¼ expð2�iA0�tÞ; ð5Þ

where A0 is independent of � and thickness t over any range of

beam energy for which the effective number of electrons

contributing to oscillator strengths is constant. Since � is taken

to be spatially constant within a shape envelope, this requires

in practice that absorption varies little over this beam-energy

range. Any changes will then show up as scaling errors in the

final result.

This establishes that multiple scattering for constant �
depends only on the product of � and t. The same result may

be obtained from the Born-series expression of Moody (1972).

Thus

dS=d� ¼ ð2�iA0tÞS;

allowing A to be found from the variation of S with � if t is

known. This expression yields both the ikonal approximation

if Sq = 0 and the Fresnel propagator if � = 0. While energy and

momentum are strictly conserved only for elastic scattering

involving transitions on the (curved) Ewald sphere, applica-

tion of the uncertainty principle along the beam path indicates

that scattering is allowed over a small range of Kz = 1/t values

which are inversely related to the sample thickness t.

4. Two-wavelength inversion using the multislice
formulation

From equations (2) and (5), since u(t) = u(q, t, �) contains the

Fourier coefficients of �ðr; t; �Þ, we see that

�ðr; t; �Þ ¼ �ðr; �tÞ: ð6Þ

Let c = �t. Then the dynamical solution will be unchanged if

�c ¼ 0 or t�� ¼ ���t, so that a change �� in wavelength is

equivalent to a change ��t in thickness. Hence

��ðrÞ ¼ �ð�1; t þ�tÞ ��ð�1; tÞ

¼ �ð�1; t þ �1�tÞ ��ð�1; tÞ

¼ �½ð�1 ���Þ; t� ��ð�1; tÞ:

The use of a difference in wavelength is thus equivalent to

small change in thickness, and the difference �� can provide

a single-scattering wavefunction.

In summary, with beam energy E, we therefore have

�t=t ¼ ���=� ¼ �E=E: ð7Þ

The multislice formulation of the multiple-scattering problem

produces the Born series in the limit of vanishing slice thick-

ness and increasing slice number, and so is consistent with the

results of x3. We now use this multislice formulation to obtain

expressions for the two-dimensional complex real-space

wavefield at two adjacent wavelengths and constant thickness.

The multislice iteration is

�2ðr; t þ�t; �Þ ¼ �1ðr; t; �Þ expðrej�ðrÞj�t�Þ � Pðr; ��tÞ;

ð8Þ

where r is a two-dimensional vector normal to the beam, �

denotes convolution and the propagator P is

PðrÞ ¼ expð�i�jrj2=��tÞ

with Fourier transform

PðqÞ ¼ expð2�iSq�tÞ ¼ expð�i�t�jqj2Þ; ð9Þ

where Sq is positive. Then

�2ðr; t; �þ��Þ ¼ �2½r; �tð1þ�t=tÞ�

¼ �1ðr; t; �Þ exp½re�ðrÞt��� � Pðr; t��Þ:

ð10Þ

This gives the relationship between multiply scattered wave-

fields at slightly different beam energies for a sample thickness

t. We can therefore obtain the charge density from the

difference or division of complex images recorded at two

adjacent wavelengths. We have

�2ðr; t; �þ��Þ

�1ðr; t; �Þ
¼ exp½re�ðrÞt��� � Pðr; t��Þ: ð11Þ

This expression may be solved for �(r) by Fourier deconvo-

lution of the propagator, which is achieved by multiplying the

Fourier transform of equation (11) by the conjugate of

equation (9). Where �� is small, the first-order expansion of

the exponential then provides the quantity �(r) if t and �� are

known. The absolute scaling of the charge density then

requires a knowledge of sample thickness, but this is often not

needed or may be obtained from a reference atom. A Weiner

filter may be used to control the magnitude of the result if the

denominator becomes zero in the presence of noise. The

choice of �� should introduce a significant phase shift, of say

�/8, within the weak-phase-object approximation, so that

�� ¼ �=ð8re�tÞ ð12Þ

or 0.2 nm for t = 2000 nm. The method assumes that the

change in absorption across this wavelength range is negligible

(or accurately known); the wavelength range should be chosen

accordingly. The method requires an approximate knowledge

of thickness if quantitative results are expected. Diffraction

patterns recorded at slightly different energies will vary in size,

so that reference periodicities may be needed for rescaling.

5. Computational trials

Simulated inversions have been demonstrated based on

equations (9) and (11) for several cases. The thickness region

in which dynamical inversion is possible must be greater than

that which produces single scattering, and less than that for

which all photons are absorbed by the photoelectric effect.

From Fig. 2, we see that this window depends on the beam

energy and the scattering angle. We also prefer small known

variations in absorption over the wavelengths chosen. Study of

the linear attenuation distance for a typical protein suggests a

best energy of about 500 eV, between the carbon and oxygen

K edges, where � = 2.478 nm and I = Ioexp(�	z) [where 	 =
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4��z/� = z/tabs, n = (1� �)� i�, � = 0.001, �= 0.000295 and tabs

= 0.669 mm for H50C30N9O10S1 with a mass density of

1.35 g cm�3 for pure protein at this energy (CXRO, 2008)].

Since typical cellular material may be at least 50% water (and

contain lipids) we approximate the real part of the refractive

index by the mean of the values for water and pure protein

and set this mean equal to the average value of the model

charge density shown in Fig. 1. For water, � = 0.00062 and � =

2.396 � 10�5 at this energy.

Conditions for convergence of the multislice formulation

have been discussed extensively in the literature [see espe-

cially Anstis (1977)] – the weak-phase-object approximation is

not made for each slice and the propagator phase shift may

exceed �/2; however, a reduction in slice thickness should not

affect the intensity predictions. The two-wavelength method

also assumes separability of Fresnel and potential-energy

effects for small wavelength changes, so that the wavelength

difference chosen must be one for which a multislice method

based on equations (10) and (7) would converge. The wave-

length change must also fall within the weak-phase-object

approximation.

Fig. 5(a) shows the charge density recovered using equation

(11) from a thickness of 0.5 mm, using beam energies around

500 eV, which is seen from Fig. 3 to fall at the onset of the

multiple-scattering region, especially for low-order phase

distortions. Complex diffraction patterns were simulated at

500 and 450 eV, corresponding through equation (6) to a 10%

change in beam energy or sample thickness. (This is consid-

erably greater than the degree of monochromaticity

commonly used in SXRD.) The charge-density profile shown

in Fig. 1(a) has been recovered with reasonable accuracy. Fig.

5(b) shows the Fourier transform of a single 500 eV diffraction

pattern, being the exit-face wavefield or multiple-scattering

image, demonstrating severe image distortion. Fig. 5(c) shows

the diffraction-pattern intensity.

Fig. 6 shows the same charge density recovered from a

larger thickness of 0.8 mm, well into the multiple-scattering
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Figure 6
(a) Charge density recovered by the inversion algorithm using diffraction
patterns simulated for 500 and 480 eV, for comparison with Fig. 1(a). The
ordinal increment is 50 e nm�3, as for Figs. 1(a) and 5(a). Thickness
0.8 mm.

Figure 5
(a) The charge density recovered by this inversion algorithm using
diffraction-pattern intensities simulated for 500 and 450 eV, for
comparison with Fig. 1(a). The ordinal increment is 50 e nm�3, as for
Fig. 1(a). The thickness is 0.5 mm, at the onset of multiple-scattering
perturbations, particularly in phase at low angles. (b) The multiply
scattered image intensity at 500 eV, showing severe distortion. This is the
Fourier transform of the complex pattern shown in (c). (c) Diffraction-
pattern intensity at 500 eV used to obtain (a), showing strong multiple-
scattering perturbations when compared to Fig. 1(b).



region, using beam energies of 500 and 480 eV. The inversion

is found to give results which are almost independent of

thickness. A known object, such as a gold nanoball, might be

used to optimize the choice of deconvolution focus �� in

equation (11).

6. Dynamical tomography

We now consider again the case where �(r, z) is an unknown

function of z. Leaving aside optical sectioning techniques that

assume single scattering, two approaches to three-dimensional

reconstruction of � are common. The first aims to assemble the

complete three-dimensional Fourier transform of � from

complex scattered amplitudes restricted by scattering kine-

matics to the Ewald sphere, which is then swept through most

of reciprocal space (or equivalently, by rotating the sample

about an axis normal to the beam). The second, less efficient,

method reconstructs real-space image projections for each

orientation of the sample, then assembles these into a three-

dimensional charge density by methods such as filtered back-

projection. The question arises as to whether either can be

adapted to these results.

The complex Fourier transform of the charge density � on

the zero-order Laue zone corresponds to a projection of �. If

this can be recovered for every orientation of the sample, a

three-dimensional reconstruction of the charge density can be

obtained. If � = �(r, z), then the three-dimensional multislice

iteration becomes

�nþ1ðr; t þ�t; �Þ ¼ �nðr; t; �Þ exp½re�
n
pðrÞ�� � PðrÞ;

which exactly solves Maxwell’s equations in the limit as the

slice thickness is taken to zero for soft X-rays (Paganin, 2006;

Thibault et al., 2006). Here

�n
pðrÞ ¼

R�t

0

�nðr; zÞ dz

is the charge density in the nth slice. This formulation, in which

every slice is different, takes correct account of multiple

scattering along the beam path. Reciprocal space is sampled at

intervals 1/�t along the z direction. Since �n
pðrÞ is not in

general proportional to �t, the solution is no longer a function

of the product �t, and changes in wavelength no longer mimic

those of thickness as required for equation (11) to hold. The

ability to vary � no longer provides a method for extracting

�(r, z), except in the trivial case where � is so small that the

scattering is kinematic, or for the case of a sample such as a

crystal, periodic along z, in which every slice can be chosen to

be the same.

We note that the PGA [the exponential term in equation

(8)], which is accurate at sufficiently low resolution for all

thicknesses, predicts a sinusoidal variation of intensity with

thickness (a different period for every point r in the sample).

This approximation, which holds if �Sqt < �/2 in equation (4),

also allows two-wavelength inversion for tomography. By

restricting both the resolution and the sample thickness, it may

be possible to find conditions in which the PGA holds. Then

the inversion scheme above may be combined with the second

back-projection form of tomography at low resolution. The

refinement of high-resolution detail could then be attempted

by matching forward-multiple-scattering calculations to the

images. This approach ignores the redistribution to high angles

of low-angle scattering, which must strictly be included in any

inversion scheme. Alternatively, a formulation of the problem

in which lateral scattering is treated dynamically but scattering

along the beam path is treated kinematically may be useful.

Refractive-index matching, discussed below, may also assist

the tomography problem.

7. Conclusions

On the question of whether absorption eliminates multiple

scattering, we find that it has the effect of greatly attenuating

multiple-scattering effects, but that a premature fall-off in

intensity with thickness at low angles (not present at high

angles) will lead to the enhancement of high spatial frequen-

cies in diffractive images. We also find phase distortions in low-

angle scattering for thicknesses greater than the low-angle

extinction distance. More rapid oscillations of the soft X-ray

case compared to electrons might be expected, due to the fact

that the phase-grating phase shift is in the same direction as

the propagator (in real space). Other factors, however, such as

the weaker interaction and more rapid increase of excitation

errors with angle, mitigate and modify this effect, while the

dominance of photoelectric absorption suppresses thickness

oscillations (producing a scaled version of the single-scattering

form) which would otherwise occur at low angles.

This paper has also attempted to provide a first step in

approaching the hitherto intractable problem of dynamical

inversion for many-beam cases. It recovers the same charge

density from all thicknesses of sample despite multiple scat-

tering, but is limited to objects with a two-dimensional shape

envelope. (It fails, for example, for a spherical cell of constant

charge density.) For three-dimensional scattering distributions

the multiple scattering will be weaker, since it is no longer

concentrated into a line and hence the absorptive effect will be

greater in reducing multiple-scattering artifacts. To extend this

two-wavelength approach, we may consider several possibi-

lities as follows. Apart from the few-beam dynamical phasing

methods used in protein crystallography, previous work has

been limited to simulations. The most promising approaches

have been:

(1) the method of Allen et al. (2000), which provides an

exact non-iterative recovery of A [equation (5)] from a

knowledge of all of complex S;

(2) the two-thickness method of Allen et al. (2001), closely

related to the approach of this paper;

(3) the dynamical ptychography method of Spence (1998);

and

(4) the hybrid input–output method, including multiple-

scattering effects (Spence et al., 1999). That approach, which

iterates between the multiple-scattering amplitudes and the

charge density, utilizes the fact that multiple scattering, by

allowing interference between scattering in different direc-
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tions, ‘solves’ the phase problem by making multiply scattered

intensities sensitive to the phases of the Fourier coefficients of

the charge density (the structure factors).

Beyond these approaches for the treatment of scattering

along the beam direction, approximations exist in which this

can be treated kinematically, with multiple scattering allowed

only laterally. It remains to be determined whether such an

approximation would permit inversion at two wavelengths to a

three-dimensional charge density from tomographic data.

Finally, we note that this paper treats an isolated object, which

may be required to enable iterative phasing [but see Rodenburg

(2008)]. For the case of a cell lying entirely within a parallel-

sided slab of ice (as in cryo-electron microscopy), one has an

entirely different situation in which only the difference between

the refractive index of the ice and that of the protein are

important (Kirz et al., 1995). As in small-angle X-ray scattering

studies, the refractive properties of the ice might then be

modified to be close to that of protein, and so minimize

multiple scattering. For a cell, these modifications must not

affect the environmentally sensitive lipid structure of the cell

membrane. If the protein is treated as a homogeneous unre-

solved mass of constant composition, then only the zero-order

Fourier coefficient of the charge density is complex (leading to

absorption) and the real-object approximation may be made if

experimental diffraction patterns show Friedel symmetry. In

this case the three-dimensional shape envelope may be

determined. In practice, soft X-ray patterns from whole cells

may not show Friedel symmetry (Shapiro et al., 2005) and give

evidence of multiple scattering. At higher resolution, where

spatial variations of, for example, carbon-atom concentration

are resolved (present in protein but not water), the phasing of

the resulting complex object will create significant difficulties.

These are addressed with varying degrees of success by the

four phasing methods mentioned in x1 and would allow

tomographic reconstruction of internal detail.

We note that the in-focus reconstruction of an image in the

single-scattering thickness region will show negligible contrast

if the zero-order beam is included, since this is a bright-field

phase-contrast image. Access to the complex image ampli-

tudes in computer-based diffractive imaging, like holography,

allows the formation of a large variety of different types of

images (dark field, bright field etc., at any focus setting) not

possible using conventional lens-based imaging, where inten-

sities are detected directly. These many forms of image may be

obtained by modifying the deconvolution propagator term in

equation (11) during reconstruction.

Equation (6) also holds true for nonrelativistic electron

diffraction in the axial orientation, thus allowing this method

to be applied in principle to low-energy transmission electron

diffraction. However, the inverse square-root dependence of

the de Broglie wavelength on the beam energy, the require-

ment for low nonrelativistic energies in the transmission

geometry (with very limited penetration) and the difficult

quantification of continuous electron scattering from isolated

nonperiodic objects in the presence of substrate scattering

(Zuo et al., 2003) all make electron experiments using two

wavelengths extremely difficult.
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grateful to Professor P. Rez for useful discussions.
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